Reg. No. : \qquad
Name : \qquad

V Semester B.Sc. Degree (CBCSS-Reg./Sup./Imp.) Examination, November 2018
 (2014 Admn. Onwards)
 Core Course in Mathematics 5B09 MAT : GRAPH THEORY

Time : 3 Hours

SECTION - A

All the first $\mathbf{4}$ questions are compulsory. Each question carry 1 mark.

1. Define a graph.
2. Define a vertex cut.
3. What is the independence number of a graph G ?
4. Define a symmetric digraph.
SECTION - B

Answer any 8 questions. Each question carries 2 marks.
5. Define a self-complementary graph. Draw a graph which is self-complementary. Draw its complement also.
6. Prove that the sum of the degrees of the vertices of a graph is equal to twice the number of its edges.
7. Draw a 3-cycle and a 4-cycle. Also draw their sum.
8. If $\{x, y\}$ is a 2 -edge cut of a graph G, show that every cycle of G that contains x must also contain y.
P.T.O.
9. Prove that a vertex of G that is not a cut vertex belongs to exactly one of its blocks.
10. Prove that every connected graph contains a spanning tree.
11. Prove that a subset S of V is independent if and only if V / s is a covering of G .
12. Prove that if a nontrivial connected graph G is Eulerian, then the degree of each vertex of G is an even positive integer.
13. Draw a digraph which is disconnected while the underlying graph is connected.
14. How many orientations does a simple graph of m edges have?
SECTION - C

Answer any 4 questions. Each question carries 4 marks.
15. Prove that in any group of n persons where $n \geq 2$ there are at least two with the same number of friends.
16. Prove that if e is not a loop of a connected graph G, then $\tau(G)=\tau(G-e)+\tau(G \circ e)$.
17. For any graph G for which $\delta>0$, prove that $\alpha^{\prime}+\beta^{\prime}=n$.
18. If G is Hamilton, then prove that for every nonempty proper subset S of V, $\omega(G-S) \leq|S|$.
19. Prove that every tournament contains a directed Hamilton path.
20. a) Show that if a tournament contains a spanning directed cycle, then it contains a directed cycle of length 3.
b) Show that every tournament of order n has at most one vertex v with $d^{+}(v)=n-1$.

Answer any 2 questions. Each question carries 6 marks.
21. a) Prove that the line graph of a simple graph G is a path if and only if G is a path.
b) Show that the line graph of the star $\mathrm{K}_{1,4}$ is the complete graph K_{4}.
22. a) For any loopless connected graph G , prove that $\mathrm{\kappa}(\mathrm{G}) \leq \lambda(\mathrm{G}) \leq \delta(\mathrm{G})$.
b) If G is a complete graph, what change happens to this inequality?
23. a) Prove that the number of edges in a tree on n vertices is $n-1$. Prove also the converse that a connected graph on n vertices and $n-1$ edges is a tree.
b) Prove that a tree with at least two vertices contains at least two pendant vertices.
24. a) Let G be a simple graph with $\mathrm{n} \geq 3$ vertices. For every pair of nonadjacent vertices u, v of G if $d(u)+d(v) \geq n$ prove that G is Hamiltonian.
b) Let G be a simple graph with $n \geq 3$ vertices. For every pair of nonadjacent vertices u, v of G if $d(u)+d(v) \geq n-1$ prove that G is traceable.

